
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

A Formalization of Java’s Concurrent Access Modes

ANONYMOUS AUTHOR(S)

Java’s memory model was recently updated and expanded with new access modes. The accompanying

documentation for these access modes is intended to make strong guarantees about program behavior that the

Java compiler must enforce, yet the documentation is frequently unclear. This makes the intended program

behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general

properties about the semantics of the access modes.

In this paper we present the first formalization of Java’s access modes. We have constructed an axiomatic

model for all of the modes using the Herd modeling tool. This allows us to give precise answers to questions

about the behavior of example programs, called litmus tests. We have validated our model using a large suite

of litmus tests from existing research which helps to shed light on the relationship with other memory models.

We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee,

which says that if a program is properly synchronized then it will exhibit sequentially consistent behavior.

Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same

location is unobservable in any program.

1 INTRODUCTION
The original Java memory model [Manson et al. 2005] included an early attempt to define the

semantics of lock-free shared memory programs running on the Java platform, but the definitions

were hard to understand and there was no easy way to check the behavior of example programs.

It was also later discovered that it ruled out existing compiler optimizations which it claimed to

support [Ševčík and Aspinall 2008]. Since then, researchers have made great advances in memory

model design while studying other weak memory models like those for ARM [Alglave et al. 2008;

Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015],

Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

Recently, the ninth version of the Java Development Kit updated and expanded Java’s memory

model using new "access modes". Though the design of the access modes is inspired by C11’s

memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated

legacy features like release sequences and release-consume accesses. Second, it includes a broad

but simple mechanism to forbid so called “out of thin-air” behavior [Batty and Sewell 2014]. Finally,

it makes no provision for a total order on writes to the same location. Taken together this suggests

new opportunities to use a simpler model, develop metatheory, and verify lock-free algorithms for

the Java platform.

However, the documentation [JDK9 2017; Lea 2017, 2018] is frequently ambiguous. This makes it

extremely difficult to provide definitive answers about program behavior and there is little hope

of proving important properties about the semantics. Further, it impedes the discussion of key

features of the model’s design.

To address these issues, we present the first formalization of Java’s access modes. Critically,

our model is precise and complete, formalizing all of the main features of Java’s access modes.

Additionally, we have endeavoured to make the model as readable as possible, defining all modes

and fences as small extensions to an intuitive notion of visibility. Specifically, we make the following

contributions:

• an axiomatic model for all of Java’s access modes, fences, and atomic read-writes;

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

• an instantiation of our model for the Herd tool, which allowed us to examine the outcomes

for more than 80 test programs; and

• an instantiation of our model in Coq, which allowed us to prove three key theorems about

the semantics that are novel for Java’s access modes.

We have constructed our model using the cat language. This allowed us to leverage the Herd

tool [Alglave et al. 2014] to give definitive answers to questions about example programs, called

litmus tests. Litmus tests are designed to highlight specific behaviors in memory models. Herd

enumerates all possible executions for a litmus test and determines which are allowed according to

the model. Then, if at least one execution is allowed, the behavior illustrated by the litmust test is

allowed by the model.

We used Herd with more than 80 litmus tests drawn from prior research to help validate our

model by comparing it to ARMv8, C11 and x86. Our goal for these comparisons is to show that

there are no unexpected differences in behavior. For example, the conventional wisdom is that

language memory models will exhibit more behaviors than architecture memory models due to

aggressive compiler optimizations. Thus, Java’s access modes should permit more behaviors than

ARMv8. If that is not the case then it should be due to a deliberate design decision and not a bug in

the definitions. For all 80 litmus tests our model behaves according to our expectations and the

documented design of the access modes.

We have also formalized our model in Coq and we prove three key theorems: absence of causal

cycles when all reads are "release" reads, sequentially consistent semantics under proper synchro-

nization (DRF), and a guarantee that each stronger mode admits fewer executions [Vafeiadis et al.

2015]. These theorems further validate the definitions of our model, give more evidence that the

model is complete with respect to the documentation, and clearly demonstrate that the semantics

is suitable for formal reasoning.

Finally, the partial order on same-location writes in Java’s access modes represents a significant

departure from the conventions of existing memory models. We show that the impact of switching

to a partial order is "unobservable" in any example program executed using our model and thereby

show that Java’s access modes can adopt a total order on writes to the same location. The simplicity

of our model shines through in our proof, which makes it clear that our reasoning is not applicable

to the more complex axiomatic models of RC11 and ARMv8.

The rest of this paper is laid out as follows. In Section 2 we use a simple example to illustrate the

ambiguity of the documentation. In Section 3 we detail the features which distinguish Java’s access

modes from other memory models. In Section 4 we give a complete account of our axiomatic model.

In Section 5 we detail the results of our comparisons with ARMv8, C11 and x86. In Section 6 we

give a formalization of the model in Coq and use it to prove the theorems listed above. In Section

7 we demonstrate that the choice of a partial coherence order is not observable in our model. In

Section 8 we discuss related work.

2 JAVA’S ACCESS MODES
Here we will introduce the basics of the Java access mode API and motivate our formalization by

way of an example program. We will show how different interpretations of the documentation can

cause one of three unwanted outcomes when using the access mode API.

Developers can make use of Java’s Access Modes, hereafter “the JAM”, through the VarHandle
API included in the JDK version 9. There are four access modes: plain, opaque, release-acquire, and

volatile. Regular reads and writes of shared variables are considered plain mode, and the VarHandle
API allows reads and writes to be annotated with one of the other three modes. The specified intent

of the JAM is that each mode provides progressively more guarantees about the behavior of its

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Short Title 1:3

accesses at the expense of some performance.

plain ⊑ opaque ⊑ release-aquire ⊑ volatile

Plain mode gives virtually no guarantees and the compiler is allowed free reign in optimizing such

memory accesses. On the other hand volatile mode provides sequentially consistent (SC) semantics

when it is used for all accesses, but requires a memory barrier for each access which can make

execution slow
1
.

The VarHandle documentation [JDK9 2017; Lea 2017, 2018] is intended to answer questions

about which access mode should be used for a read or write to maximize performance while

providing enough guarantees to ensure program correctnes. It cites three bad outcomes arising

from the confusion around the old Java memory model as motiviation for the new access modes:

undersynchronized and broken code, oversynchronized and slow code, and platform specific code.

However, the documentation is written in loose prose which can result in any one of the same

three outcomes which the access modes were created to address.

rf
a: W(x,1)

b: W(y,1)

c: R(y,1)

d: R(x,?)

po po

Fig. 1. Event Graph

To see this, consider the example execution of a message

passing program in Figure 1. An execution graph like this

catalogues the relationships and effects of each memory access

from and example program. M(x,n) represents a memory

access of x with the value n where M can be write, W, a read,
R and later an atomic read-write RW. Relationships between
memory access are represented as directed edges. The dashed

edge labeled with rf represent reads-from and the edges labeled with po represent the sequence of

instructions as defined in the program. Note that a and b are concurrent with c and d.
Intuitively, if the read of y produces the value 1, it acts as a signal to the rest of the second thread

that the write to x has completed. However, in the presence of weak memory accesses the sequence

of execution may not follow program order. Thus, an important question is: which access modes

should one use so that d reads the value 1 from a in keeping with program order, and not 0 from

the initialization of x? Depending on a reasonable interpretation of the documentation, our answer

to this question may result in one of the aforementioned bad outcomes.

Undersynchronized, broken code. Consulting the documentation [Lea 2018] we find that

opaque mode makes the following guarantee:

If Opaque (or any stronger) mode is used for all accesses to a variable, updates do not

appear out of order.

Whether opaque mode is the correct mode for each access to ensure that d reads 1, depends

heavily on the definition of “out of order”. Intuitively, we assume that rf implies that the read has

observed the effects of the write. Then, if the “order” from the documentation for opaque mode

is program order, we might reasonably conclude that updates (writes) are observed in program

order. In which case, d observes the effects of c and b observes the effects of a. Then, through the

rf edge we can conclude that d observes the effects of a and d will read 1.

Unfortunately this approach actually leaves the code undersynchronized and it will not work as

described. It turns out, the documentation also says that opaque mode makes no guarantees about

information that travels through reads:

. . . reading a value in Opaque mode need not tell you anything about values of any

other variables.

1
This property, of progressively greater guarantees, is called monotonicity and we prove it as a theorem for our model in

Section 6

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

rf
a: W(x,1)

b: WRA(y,1)

c: RRA(y,1)

d: R(x,1)

po po

(a) Message Passing, Fixed

rf

a: W(x,1)

b: WRA(y,1) c: RRA(y,2)

d: R(x,1)

po po

b’:W(y,2)

po

(b) Release-sequence

rf
a: W(x,1)

b: WRA(y,x)

c: RCO(y,x)

d: R(x,1)

po po

(c) Consume-read

Fig. 2. Release sequences and Consume-reads

Thus, whether or not writes are observed in program order, the read c may not tell us anything

about what happened with a opening the way for d to read 0 from the initial write to x . These two
pieces of documentation can lead to an inconsistent understanding of opaque mode. A reasonable

reader may react defensively and look to the stronger modes to guarantee the correct program

behavior.

Oversynchronized, slow code. A defensive approach to getting the right program behavior is

to employ volatile mode. This would give all of the reads and writes in the program SC semantics,

guaranteeing that everything is observed in program order. Thus, the po and rf edges would indeed
result in d observing a, and d will read 1. However, if the compiler takes the approach outlined in

the documentation it will insert a full fence after every SC access which will slow down execution.

Platform specific implementation. Alternately, we may note that x86 processors do not

reorder writes with writes or reads with reads. Assuming opaque mode accesses will translate

directly to hardware instructions, we can tag each access as opaque and use same reasoning that we

used for volatile mode. Unfortunately this reasoning is unsound for execution on ARM processors,

which allow such reorderings, and the code would not be portable.

As it happens, the best solution is to use release-write for b and acquire-read for c. These
modifications appear as the RA annotations for the write and read of y in Figure 2a. This will

ensure the orderings, depicted as gray edges, for any access before b and any access after c with a

minimum of synchronization. Thus, a is observed by d through those orderings and d will read

the value 1. Critically, we can only demonstrate this after more precisely defining the guarantees

provided by the opaque and release-acquire modes of the JAM. Our formalization brings this much

needed clarity to the current specification.

3 DISTINGUISHING FEATURES OF THE JAM
While the JAM was inspired by the access modes of C11, it makes several departures from C11 and

other memory models that are worthy of consideration and a challenge for formalization. First, it

sheds legacy features like the release sequences and consume-reads of C11. Second, it contains a

broad and simple definition of causal cycles for the purposes of ruling out thin-air reads. Finally

it includes a non-total ordering on writes to a particular memory address, which is called the

coherence order. Here we will discuss how each of these differences will impact any formalization

effort for the JAM.

3.1 Letting Go of Release Sequences
Release sequences and consume-reads can be seen as specialized variants of the release-acquire

memory order in C11 and release-acquire mode in the JAM. The idea is that, in certain cases, it’s

possible to get the same guarantees as a release-write and acquire-read pair, like the one Figure 2a,

with less synchronization. The result is faster execution in some contexts.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Short Title 1:5

r2 := y
x := r2

r1 := x
y := r1

(a) Out of Thin-air

c: R(y,n)a: R(x,n)

b: W(y,n) d: W(x,n)
rf

popo

(b) Causal Cycle

r2 := y
x := 1

r1 := x
y := 1

(c) Load-buffering

Fig. 3. Causal Cycles

Release sequences can be used when a write that is after a release-write is read by an acquire-read.

Consider the message passing variant in 2b where b is followed by another distinct write to y, b’.
If c reads from b’ then the release sequences of C11 would guarantee that d would see a through

the orderings depicted with gray edges. Then d will read the value 1, just as it would if c read from

b. Without the guarantees of release sequences, b’ must also be a release-write to get the desired

outcome.

Consume-reads are used with a release-write when the memory accesses which must be ordered

after the consume-read are data dependent on the value of the read. Consider the message passing

variant in 2c where c is annotated with CO and reads a pointer that determines the memory address

that d reads from. Some architectures enforce the ordering of c and d in the presence of such data

dependencies without the extra synchronization that would result from making c an acquire-read.

This can speed up execution in those settings.

The JAM does not include the guarantees of release sequences or any way to annotate a read

as a consume-read. This is a design choice in favor of simplicity in the model and it gives us the

opportunity to build a more readable and more easily testable model.

3.2 Acyclic Causality
In Figure 3a we have a classic example program which can exhibit a so called “thin-air” read

under sufficiently weak memory models. The question is, at the end of execution can x = y = 42?

Intuitively, assuming both x andy are initialized to 0, this program can’t generate 42 “out of thin-air”,

but many axiomatic models do not exclude such executions from the set of all candidate executions.

Observe that, in any execution that allows x = y, there must be a cycle in the program order and

reads-from relations, as illustrated in Figure 3b. The JAM explicitly forbids such cycles, but at the

cost of forbidding some behaviors which may be beneficial for performance.

For example, consider the classic load-buffering (LB) litmus test in Figure 3c, where the question

is, can r1 = r2 = 1? If performance was the sole concern in the design of the JAM this behavior

would be allowed because the reads can be reordered with the writes with the aim of improving

performance. Unfortunately, this example also exhibits the same cycle in the program order and

reads-from, so it is forbidden by the JAM.

The problem of differentiating these kinds of examples has been studied at great length by

memory model researchers. Another approach is to forbid cycles in rf and a subset of program

order based on a notion of dependency. Sadly, this too has very subtle issues, as outlined by Batty

and Sewell [2014]. The original, formal Java Memory Model [Manson et al. 2005] attempted to

address the issue of causal cycles in its full generality. More recently the Promising semantics of

[Kang et al. 2017] introduced a novel "promise" mechanism to model compiler optimizations for

this purpose.

In all of these cases the complexity of the resulting models makes them hard to understand and

hard to test. Instead, the JAM specification adopts a simple solution by forbidding cycles in the

program order and reads-from. While this does forbid the behavior of the second example at the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

cost of some performance [Ou and Demsky 2018], it gives us yet another opportunity to build a

simpler model.

3.3 Partial Coherence Order
The JAM specification makes no provision for a total ordering of writes to a given memory location

which is a standard feature in other memory models. The consequences of this design choice

manifest in subtle ways.

For example, the standard definition of atomicity for read-writes relies on a total coherence order.

Borrowing the definition from Vafeiadis et al. [2015], for a read-write, RW, the write it reads-from,

W1, and the coherence order,
co
−−−→, we have:

W1
rf
−−−→ RW =⇒ ¬∃ W2, W1

co
−−−→ W2

co
−−−→ RW

Taken together with a total coherence order this means that the atomic pairs of writes and read-

writes are always totally ordered. Since the JAMmakes no such guarantees regarding normal writes

there are ambiguities like the one in Figure 4. There, the write-read-write pairs are not ordered

across threads since there is no global relationship between writes.

co co

c: W(x,2)

co0 co0

? rfrf
a: W(x,1)

b: RW(x,1,3)

init: W(x,0)

d: RW(x,2,4)

Fig. 4. Concurrent Read-writes

As a consequence, our model must include extra contraints

for read-writes while being careful not to over-constrain

normal writes which would otherwise be concurrent. We

detail our approach in Section 4.5.

Separately, our drive for simplicity in the definitions of

the model has yielded a key insight where the coherence

order is concerned. While we have remained faithful to the

documentation and personal communications with the au-

thors in modeling a partial coherence order, we will show

that the effects of that choice are not observable under our

model. Specifically, we show that it is impossible to construct

a litmus test that behaves differently in the presence or absence of a total coherence order.

4 AXIOMATIC MODEL
The JAM has six components: plain mode, opaque mode, release-acquire mode, volatile mode,

fences, and atomic read-writes. Each of the modes, from plain to volatile, provides strictly more

guarantees than the previous mode.

To model the JAM we have constructed an axiomatic semantics. The definitions of our model act

as a predicate over candidate executions which include memory events, e.g. reads and writes, and

relations over those events, e.g. reads-from and program order, in the style of Alglave et al. [2014].

Our definitions focus on two key concepts. The first is an acyclicity requirement for the coherence

order. Aside from the restriction of causal cycles, this is the only mechanism by which executions

are forbidden. Thus, every unwanted execution must exhibit a cycle in the coherence order. The

second is an intuitive notion of visibility, which represents when one memory access has "seen"

the effects of another memory access. The behavior of the three modes and fences are modeled as

small extensions to this relationship.

In each of the following subsections we detail the extensions to our model for each component.

The full model can be viewed in Appendix A.

4.1 Plain & Opaque Mode
In the JAM documentation, plain mode accesses are given virtually no guarantees when they occur

in different threads without correct synchronization. Opaque mode, on the other hand, does provide

some cross thread guarantees which form the basis for the rest of the memory model. There are

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Short Title 1:7

some subtleties involved in the documented relationship between plain and opaque mode accesses

so we will address them together. First, the main properties that opaque mode accesses guarantee

are:

Bitwise Atomicity Reads will see the value of only one write. Opaque mode guarantees that

reads will not see mixed bits from different writes.

Write Availability Writes can be read by later reads. The intent is to avoid a situation (e.g.

in a spin-loop) where repeated reads never see a write in another thread because they are

optimized by the compiler to execute only one time. When an optimization like this happens,

the availability of the write for the read depends on when the read is executed [Corbet 2012].

Acyclic Causality A read should not influence its own value. As described in Section 3.2, this

forbids counter-intuitive behavior like thin-air reads.

Coherence The order of writes should respect visibility and should agree with the way that

reads observe their order. For example, one guarantee (of four we will define later) is that a

read should be paired with the last write that it knows about and not an earlier one.

Our model of opaque mode focuses on acyclic causality and coherence. In keeping with other

axiomatic models built for Herd [Alglave et al. 2008; Lahav et al. 2017; Pulte et al. 2017], our model

pairs each read with a single write and there is no accounting for optimizing reads out of loops as

Herd does not support them.

Plain Coherence. The JAM documentation does not include a coherence guarantee for plain

mode accesses. This follows the approach in the C11 documentation but it departs from formal

models for C11.

rf

a: W(x,1)

b: RW(y,0,1)

c: RW(y,1,0)

d: W(x,2)

po po
co?

Fig. 5. Message Passing Coherence

To see why plain mode accesses should be included in

the coherence ordering guarantees, note that plain mode

accesses are safe to use within a critical section guarded by

a lock according to the documentation. The idea is that code

which is properly synchronized with locks will have single

threaded semantics for the duration of the critical section.

Thus, the model shouldn’t require accesses to be annotated

with anything stronger than plain mode.

Then, consider the message passing variant in Figure 5. Here, the purpose of this pattern is to

signal the end of the critical section through atomic read-writes that unlock, b, and lock, c, the
variable y. For any lock to work correctly, the accesses which are program order before the unlock,

a po
−−−→ b, must be visible to accesses after the lock, c po

−−−→ d (for now we leave the mechanism that

enforces these orderings unspecified). In particular the effects of the write a should be visibile to

the write d, a co?
−−−→ d.

However, even if the unlock and lock enforce program order of the plain writes, and thereby

show that a is visible to d, we would not be able to derive a co
−−−→ d because the coherence rules

do not apply to plain accesses. This stands in contrast to formal models of C11 [Lahav et al. 2017]

where the coherence order and happens-before relations apply to plain accesses. As a result, our

model extends the coherence order guarantees to plain mode accesses and only the extra guarantee

of acyclic causality is left to opaque mode.

Herd Model. Figure 6 details our axiomatic model of the JAM’s plain and opaque modes as

defined in the cat modeling language. cat includes the following built in operations: |, &, ;, +, ˜
are relational union, intersection, composition, transitive closure, and complement. New constructs

are defined with let. Filters, like wwco, are defined on relations using let F(R) = . . . and applied

with F(R). Finally, models can include checks like acyclic for relations.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

let vo = rf+ | po-loc

let wwco(rel) = rel & ~id
& loc & (W * W)

let coww = wwco(vo)
let cowr = wwco(vo;invrf)
let corw = wwco(vo;po-loc)
let corr = wwco(rf;po-loc;invrf)

let coinit = wwco((IW * W))
let cofw = wwco((W * FW))

let co = coww | cowr | corw
| corr | cofw | coinit

acyclic co

let opq = O | RA | V
acyclic (po | rf) & opq

Fig. 6. Opaque Mode

Herd provides several built-in, ambient sets and relations

for models defined in cat. IW, W, FW, R, O, RA, V are the sets of

initial writes for each location, plain mode writes, the final

plain mode writes to each location, plain mode reads, opaque

accesses, release-acquire accesses, and volatile accesses. po,
po-loc, rf, and invf represent the program order, program

order per-location, reads-from, and inverted reads-from rela-

tions. loc relates memory accesses to the same location and

id is the identity relation. Note, that we do not use Herd’s

built-in coherence relation but rather define our own without

a total ordering.

We define visibility order, vo, using two properties, po-loc
and rf+. In the first case, given two memory accesses to the

same location in the same thread the second should see the

effects of the first. In the second case, the sequence of one

or more reads guarantees that the final read is executing

in a context where the effects of the write are visible. This

definition for vo guarantees only the most basic forms of

ordering which is important given the inclusion of plain

mode accesses.

Then, to satisfy the coherence requirement we first ensure

that the coherence order includes only distinct writes to the same location, wwco, and adopt the

four behaviors originally identified for C11 by Batty et al. [2011]:

coww Two such writes ordered by visibility are similarly coherence ordered.

cowr A read chooses the last write it has seen.

corw A write that follows a read of the same location in program order is coherence ordered

after the write paired with the read.

corr Program ordered reads to the same location order their writes in the same way.

We also order the initialization write before all writes of the same location, coinit, and we

order all writes before the final write of the same location, cofw. In the rest of the paper these

relationships will be distinguished as co0 for clarity but they are treated the same as any other co
edge by the model.

These six rules make up the definition of the coherence order, co, until we discuss read-writes.
Then, the primary mechanism by which the model forbids executions is through requiring the

coherence order to be acyclic, acyclic co. In Figure 7, we give examples of how each coherence

rule forbids an execution by showing a cycle in the coherence order. In every example, the final

write of 1 is assumed to be coherence order after all other writes, co0.
In Figure 7a, if we the write, a, is visible write, b, to the same location then a is not the last write.

In Figure 7b, if the read c has seen the last write b then it should not be able to read an older write

a. In Figure 7c, if we can follow the read of a to b to a later write, c, then a can’t be the last write.
In Figure 7d, given two reads in program order, b and c, if b has seen the last write then c should
not be able to read an older write.

Finally, we must forbid causal cycles for opaque mode access. We define opq to be any opaque or

stronger access since any guarantee provided by opaque should apply to stronger access modes.

Then, we forbid cycles in the union of program order and reads-from, qualified for opaque mode

accesses: acyclic (po | rf) & opq.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Short Title 1:9

a: W(x, 1)

b: W(x, 2)

co0co vo

(a) WW

rf
vo

co

co0a: W(x,2) b: W(x,1)

c: R(x,2)

(b) WR

rf

po
co

co0

a: W(x,1) b: R(x,1)

c: W(x,2)

(c) RW

rf

rf
po

d: W(x, 2)
co0

co

a: W(x, 1) b: R(x, 1)

c: R(x, 2)

(d) RR
Fig. 7. Coherence

As we will see in the following sections, these base definitions allow us to model nearly every

other component by extending vo. The lone exception is atomic read-writes, for which we extend

the coherence order directly.

4.2 Fences
The JAM supports five types of fences: release, acquire, load-load, store-store, and full. Programs

often include fences to enforce the order of memory access effects before and after the fence. We

update vo by extending visibility to rfso+ and abstracting over these fence types with specified
orders [Bender et al. 2015; Crary and Sullivan 2015]. We therefore require that programs relate the

ordering of pairs of memory accesses using either svo or spush in place of fences.

with to from linearisations(M\IW, cofw | rf | into)
let spushto = to+ & (domain(spush) * domain(spush))
let rfso = rf | svo | spush | spushto;spush
let vo = rfso+ | po-loc

The effects of intra-thread ordering fences (release, acquire, load-load, and store-store) are

modeled with specified visibility orders, svo. Full fences, are modeled as specified push orders,

spush and spushto, in the style of Crary and Sullivan [2015].

This approach allows us to extend visibility to account for synchronization in a way that is

uniform for fences and their related access modes. Moreover, the abstraction allows the compiler

to make smart choices to ignore specified visibility based on existing intra-thread ordering of

instructions guaranteed by a target architecture as discussed in the work of Bender et al. [2015];

Sullivan [2015]. We will see an example of this when discussing atomic read-writes.

Note that trace order, to, is a total ordering of all memory accesses (except for initial writes) as

constructed by Herd’s built-in linearisations function. Trace order respects cofw, rf, and all

intra-thread orderings, into, induced by specified visibility orders, push orders and later release-

acquire memory accesses and volatile memory accesses. Intuitively, each of these synchronization

mechanisms guarantees that the related memory accesses are executed in program order.

Specified Visibility Orders. To see how specified visibility orders create intra-thread visibility

between accesses, consider the event graph in Figure 8 for the message passing example from

Section 2.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

By specifying that a svo
−−−−→ b and c svo

−−−−→ d we can show that d could not have read 0 from the

initial write to x . First, we assume that the initial write to x is coherence order before a, init co0−−−→ a.
Then, assume that d has read from the initialization, R(x , 0). We will show a contradiction. In the

graph we have that, a svo
−−−−→ b rf

−−−→ c svo
−−−−→ d. By the definition of rfso we have the three edges

that combine to show a vo
−−−→ d. Then, by cowr (Fig. 7b) we have that a co

−−−→ init which is a cycle

in co and a contradiction.

rf svo

init: W(x, 0)

co0co rf

svo

a: W(x, 1)O

b: WR(y, 1)

c: RA(y, 1)

d: R(x, 0)O

Fig. 8. Specified Visibility

init: W(x, 0)

co0co rf

 Ofence Ofence

a: W(x, 1)

b: R(y, 0)

c: W(y, 1)

d: R(x, 0)

Fig. 9. Fences, One side

init: W(x, 0)

co0co rf

vo
spushspush

toa: W(x, 1)

b: R(y, 0)

c: W(y, 1)

d: R(x, 0)

Fig. 10. Push order, One side

Specified Push Orders. Specified push orders create vis-

ibility relationships in two ways. The first is an intra-thread

visibility ordering between the two push ordered instructions

like svo. This appears as the spush in the definition of rfso.
The second, is a cross-thread ordering that emulates the

standard total ordering of two full fences. Given two push

orders, the head of the first will be visible to tail of the second,

or vice-versa based on the current ordering of the heads in

to. The ordering of the heads is recorded as spushto which

we connect with the additional visibility ordering of one tail

using, spushto;spush.
To see how push orders emulate full fences, consider the

store-buffering litmus test in Figure 9. The question is, can

both reads take their values from the initialization?

First, we assume the gray edge between the two fence
instructions, fence −→ fence, which represents one side of

the total ordering provided by full fences. Then, we assume

that d reads from the initial write to x and show a contra-

diction. Since fences also provide the intra-thread orderings

a −→ fence and fence −→ d, we can see that a is ordered

before d. Then by cowr it must be that a co
−−−→ init, which

creates a cycle with init co0−−−→ a and a contradiction. On the

other side of the ordering between fences a similar argument

applies if b reads from initial write to y. Thus, b and c could

not have read from the initial writes to x and y in the same

execution.

Push orders are more direct but capture the same ordering.

In Figure 10 both write-read pairs are push ordered.

First we assume one side of the total trace order between

the two writes, a to
−−−→ c. Again, we assume that d reads

from the initial write to x and show a contradiction. By

spushto;spush, we have a vo
−−−→ d which means that d has

seen a and the same reasoning with cowr that we used with

the fences applies.

Note that including spushto in vo in place of spushto;spush would give the desired visibility

between the heads and tails of two orders by transitivity, but it would also give an ordering to the

heads of the push orders which does not otherwise exist.

Specified orders have a natural implementation as fences which has been studied by Bender et al.

[2015] and Sullivan [2015]. We give such a mapping in Appendix B.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Short Title 1:11

4.3 Release-Acquire Mode
We can now make small extensions to incorporate other access modes into our model. First, we

define release-acquire mode following the standard set by other models like C11 [Committee et al.

2010] and ARMv8 [Pulte et al. 2017].

let rel = W & (RA | V)
let acq = R & (RA | V)
let ra = po;[rel] | [acq];po | rfso
let vo = ra+ | po-loc

We define release writes, rel, to be any write marked as release or volatile. We define acquire

reads, acq to be any read marked as acquire or volatile. Again, any guarantee provided by release-

acquire mode should hold for volatile mode.

We update the vo definition from opaque mode with fences by extending what was previously

rfso+ to be ra. We add edges from memory accesses for any location to a release write that is

later in program order, po;[rel]. We also add edges from an acquire read to program order later

opaque memory accesses for any location, [acq];po. Note that the documentation makes clear

that plain accesses should be ordered by release writes and acquire reads so long as the types are

bitwise atomic.

rf ra

init: W(x, 0)

co0co rf

ra po po

a: W(x, 1)OO

b: WRA(y, 1)

c: RRA(y, 1)

d: R(x, 0)OO

Fig. 11. Release-Acquire Visibility

To see, how the release-aquire extension to opaque mode

works, consider the message passing example from the Sec-

tion 2. Note that, we use superscript RA for release writes,

WRA, and acquire reads, RRA. Later we will use V for volatile ac-

cesses. Then, if we adopt a release write for b and an acquire

read for c we can show that, a vo
−−−→ d, and the reasoning is

the same as for specified visibility orders in Section 4.2.

We note that our definitions suggest that, if all reads were

release reads, we could derive a visibility relationship be-

tween a read and itself in executions exhibiting causal cycles.

In section 6, we prove that visibility cycles are a contradiction

in our model and, as such, causal cycles are forbidden when

all reads are release-reads.

4.4 Volatile Mode
Volatile mode is a further extension of the visibility order in release-acquire mode. We update vo
by extending ra to vvo. Here volint creates edges from any access to a volatile read that is later in

program order, po;[V & R], and from an volatile write to any program order later opaque memory

access, [V & W];po.

let vol = V
let volint = po;[vol & R] | [vol & W];po
let push = spush | volint
let vvo = ra | pushto;push | push
let vo = vvo+ | po-loc

These new edges preserve program order for any access before or after the volatile access when

combined with the visibility definition of release-acquire. We also extend spush with volint edges
so that we can leverage the same visibility relationships induced by push orders for volatile accesses.

A simpler approach would be to translate the total trace ordering into visbility edges. That is, we

could replace the definition of vol above with the following:

let vol = ra | spush | volint | to & (V * V)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

rfa: WV(y, 1) e: RRA(y, 1)

f: RRA(x, 0)

porapo ra

init: W(y,0)

vol

co0co rf
b: WV(x, 1) c: RRA(x, 1)

d: RRA(y, 0)

(a) IRIW Release-Acquire

rf

rf
a: WV(y, 1) e: RV(y, 1)

f: RV(x, 0)
vo

init: W(x,0)
co0co

popovolint volint

b: WV(x, 1) c: RV(x, 1)

d: RV(y, 0)

(b) IRIW Volatile

Fig. 12. IRIW Variants

This approach more directly encodes the cross thread ordering guarantee of sequential consis-

tency, but, unfortunately, this is too strong.

Consider a modified version of the classic IRIW litmus test in Figure 12a. The question is, can

both d and f read from the initial write to x and y? As outlined in the JAM documentation the

acquire reads in this example are allowed to see the writes in different orders, so both can read

from the initial writes for x and y. However, if volatile mode accesses are totally ordered as in the

proposed definition, then we have either a vo
−−−→ b or b vo

−−−→ a. In Figure 12a we have the first case.

Then we have a vo
−−−→ d+ because a vol

−−−−→ b rf
−−−→ c ra

−−−→ d. Then by cowr, we have that a co
−−−→ init,

which is a contradiction. In the other case, b vo
−−−→ a, we have a contradiction when f reads from

the initial write to y.
Instead, we extend our notion of push orders and define push to include both spush and volint

edges. This has the same effect as push ordering accesses related by volint. As we will demonstrate

later, using a matching litmus tests, this guarantees the correct behavior for the release-acquire

variant of IRIW because it enforces no direct oridering between the two writes.

Importantly, it also gives the correct behavior when the reads are volatile, which should be SC

semantics. Consider Figure 12b which has one of the two possible orderings given by pushto;push
when the reads are volatile. This correctly establishes c vo

−−−→ f creating a contradiction for the

opposite thread’s final read. As before the other direction of the total order forbids the other read.

4.5 Atomic Read-Writes
The behavior of atomic read-writes is the only part of the JAM that is not modeled by extending

vo. Recall Figure 4 from Section 3. We must take care to ensure that we do not allow concurrent

read-writes in the presence of a non-total coherence order. To achieve this we update the coherence

order co with two additional rules:

let corwexcl = wwco((rf;[RW])^-1;co')
let corwtotal = wwco(((RW * W) | (W * RW)) & to)
let rec co = ... | crwexcl | corwtotal

The first, corwexcl ensures exclusivity in the relationship between the read-write and its paired

write. Note that, for clarity, we separate out corwexcl even though it recursively refers to co in its

definition. As illustrated in Figure 13, if there is a write co-after the one paired with the read-write,

a co
−−−→ b then it is co-after the read-write, c co

−−−→ b.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Short Title 1:13

rf
co

co

b: W(x,2)

a: W(x,1)

c: RW(x,1,2)

Fig. 13. Read-write Exclusivity

Recalling the example of Figure 4, this exclusivity is not

enough to prevent concurrent read-read-write pairs to the

same location. Since exclusivity uses the ordering of other

writes with the pairedwrite we could consider a total ordering

just for paired writes.

let pairedw = domain(rf;[RW])
let corwtotal = wwco((pairedw * pairedw) & to)

This suffices to forbid concurrent read-write chains to the same location. In Figure 4, by

corwtotalwe have a co
−−−→ c or c co

−−−→ a. Then, in the first case, we have b co
−−−→ c by corwexcl. The

other side is similar. However, this approach inadvertently orders writes that could be concurrent

under a partial coherence order. Instead, as in the first definition, we choose a total ordering with

the read-write itself.

Now any chain of read-writes will be exclusive without unnecesesarily ordering regular writes.

We will show that in Figure 4 either, b co
−−−→ c or d co

−−−→ a. By corwtotal we have d co
−−−→ a or

a co
−−−→ d. In the first case we are done. In the second case, we consult corwtotal again and we

have b co
−−−→ c or c co

−−−→ b. In the first case we are done. In the second case, by assumption we have

a co
−−−→ d and c co

−−−→ b. Then we can apply corwexcl to both to derive c co
−−−→ d and d co

−−−→ c, which
is cycle and a contradiction. Importantly this reasoning can be applied repeatedly to any chain of

read writes to achieve exclusivity.

We note here, that JAM makes no intra-thread ordering guarantees for atomic read-writes even

though they exist on some architectures like x86 [Owens et al. 2009]. We discuss this in more detail

in Appendix B.

4.6 Summary
Our axiomatic model of the JAM is complete, covering all four modes, atomic read-writes, and

all five fence types in less than 40 lines of definitions. Moreover each component is implemented

as a modest extension to just two relations which makes it readable. Now we must demonstrate

that the model is consistent with expectations about the behavior of the JAM as outlined in the

documentation. We discuss the results of our comparison with ARMv8, RC11 and x86 in the next

section.

5 VALIDATION
In this section we validate our formalization of the JAM by comparing litmus test outcomes for the

JAM with the outcomes for ARMv8 [Pulte et al. 2017], RC11 [Lahav et al. 2017] and the model for

x86 included with Herd. We use these comparisons to show that there are no unexpected differences

in behavior between each pair of models. For example, we expect the JAM to permit more behaviors

than ARMv8 with the exception of litmus tests like load-buffering (Fig. 3c) because the behavior is

forbidden by the JAM’s definition of causal cycles.

We run the tests using the Herd tool [Alglave et al. 2014]. Herd exhaustively enumerates all

possible executions of a litmus test and checks if each execution is allowed by the model being

tested. We can then compare the three possible results for each model to see how often executions

are allowed: Always, Sometimes, and Never. In terms of the behavior being tested Always and

Sometimes mean that the behavior is allowed, while Never means that it is not allowed. Weaker

memory models should allow more behaviors and see more Always and Sometimes results, while

stronger memory models should allow fewer behaviors and see more Never results.
Our test suite is built with litmus tests taken from existing research for the three models we

compare against. Importantly we did not modify any of these tests. However, Herd uses different

built-in relations to refer to the access types of each model. For example, Herd provides the L built-in

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

Pulte et al. [2017]

name ARMv8 JAM

WRC+addrs Never Never
LB+data+data-wsi Never Never
W+RR Never Never
totalco Never Never
PPOCA Sometimes Sometimes
IRIW Sometimes Sometimes
IRIW+addrs Never Sometimes
IRIW+poaas+LL Never Sometimes
IRIW+poaps+LL Never Sometimes
MP+dmb.sy+addr-ws-rf-addr Never Sometimes
WW+RR+WW+RR+wsilp+poaa+wsilp+poaa Never Sometimes
LB Sometimes Never

Fig. 14. ARMv8 Litmus Test Comparison

to refer to release-writes in ARMv8 litmus tests and the REL built-in to refer to release-writes in

C11 litmus tests. Thus, for each comparison we include a mapping between the access types of the

other model and the access modes of the JAM.

For each comparison we define the mapping between the built-in relations of the two models,

we detail our expectations for the results, and then discuss the results of the comparison. As we

will see our model behaves as expected in all cases.

5.1 Comparison with ARMv8

let opq = M
let rel = L
let acq = A
let spush = po;[DMB.SY];po

Fig. 15. ARMv8 Mapping

Herd provides several built-in relations for the ARMv8 litmus

tests: M for normally memory operations, L for release writes, A for

acquire reads, and DMB.SY for full fences. There are no SC/Volatile

accesses.

Mapping. We map every memory access to opaque mode with

opq = M. This is conservative with respect to our expectation that

the JAM permits more behaviors than ARMv8. If we were to map some accesses to plain mode they

would be allowed to exhibit causal cycles. Thus, mapping all memory accesses to opaque mode

means the JAM model will permit fewer behaviors.

We map release-writes to release-acquire mode writes, rel = L and acquire-reads to release-

acquire mode reads, acq = A. Note, that M includes L and A so release writes and acquire reads will

also be treated as opaque mode accesses. Finally we treat all accesses with a full fence between

them in program order having a specified push order.

Expectations. As stated, we expect the JAM to be weaker than ARMv8 since the JAM is a

language memory model which is subject to aggressive compiler optimizations. That is, we expect

that any time ARMv8 exhibits a behavior the JAM should too and there should be instances where

the JAM exhibits behaviors that ARMv8 doesn’t. The lone exception is cases where the broad

definition of causal cycles adopted by the JAM will rules out behavior like the load-buffering

example of Figure 3c.

Results. Aside from totalco and LB, all the tests come from the supplementary material accom-

panying the ARMv8 model of Pulte et al. [2017] which we use for comparison. Figure 14 shows

the results of our comparison and they agree with our expectations: the JAM is at least as weak as

ARMv8 except in the case of load-buffering (LB).

Many of the results owe to the fact that the JAM is not multi-copy atomic. That is, unlike ARMv8,

different threads can see writes to different locations in different orders. So, IRIW+* and WRC+* are

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Short Title 1:15

allowed for the JAM but not for ARMv8. The WW+RR+WW+RR+wsilp+poaa+wsilp+poaa litmus test

is a variant of IRIW where all writes are release writes and all reads are aquire reads. The writes in

this test use a weaker form of synchronization than the example in Figure 12a in Section 4.4 where

the behavior is allowed by the JAM. As a result this behavior is allowed by the JAM. Finally, the

LB test is identical to the example in Figure 3c from Section 3. This execution is allowed by the

ARMv8 model but it is a cycle in (po | rf) & opq which is explicitly disallowed by the JAM.

5.2 Comparison with RC11
C11’s atomic memory accesses can be annotated with memory orders. Herd provides the following

built-in relations for the memory orders and accesses in the C11 litmus tests: M for plain memory

access, RLX for relaxed memory order accesses, REL for release memory order accesses, ACQ for

acquire memory order accesses, REL_ACQ for release-acquire memory order read-write accesses, SC
for sequentially consistent memory order accesses, F & REL for release fences, F & AQR for acquire
fences, F & SC for sequentially consistent (full) fences, and F \ SC for all other fences.

let opq = RLX | ACQ | REL | ACQ_REL | SC
let rel = REL | ACQ_REL | SC
let acq = ACQ | ACQ_REL | SC
let vol = SC
let svo = po;[F & REL];po;[W] | [R];po;[F & ACQ];po
let spush = po;[F & SC];po

Mapping. Our mapping for the relations provided by Herd for C11 follows the informal relation-

ship outlined in the documentation for the JAM [Lea 2018]. All plain accesses in C11 are treated

as plain accesses in our mapping to the JAM. We map relaxed memory order accesses or stronger

to opaque mode, opq = RLX | ... , release memory order accesses or stronger to release mode,

rel = REL | ... , acquire memory order accesses or stronger to acquire mode, acq = ACQ |
... . sequentially consistent memory order accesses to volatile mode, vol = SC. We also map

release fences before writes, po;[F & REL];po;[W], and acquire fences after reads, [R];po;[F &
ACQ];po, to specified visibility orders, svo. Finally, we map sequentially consistent fences, po;[F
& SC];po, to push orders between program order earlier and program order later accesses.

Expectations. The access modes of the JAM are inspired by the memory orders of C11 so this

comparison is of particular importance. We expect the JAM to match C11 except in cases where

release-sequences, consume-reads, or causal cycles are involved.

Results. In Figure 16 we have the results of the comparison with the RC11 model of [Lahav et al.

2017]. We include the tests from research by Wickerson and Batty [2015], [Vafeiadis et al. 2015],

[Lahav et al. 2017]. In the case of [Wickerson and Batty 2015] and [Vafeiadis et al. 2015] we used

the tests directly. In the case of [Lahav et al. 2017] we translated the tests from the paper to Herd

litmus tests ourselves. The results largely agree with our expectations. The exceptions are places

where the RC11 model breaks with the C11 specification. We will discuss each in turn.

The cyc_na test is the same as the load-buffering example from Section 3 but all the accesses are

plain. The JAM allows this cycle in plain mode po | rf because its acyclicity requirement only

applies to opaque mode or stronger accesses. The RC11 model breaks with C11 by including an

acyclicity requirement for po | rf for all memory accesses.

The lb test is the same as cyc_na except that all of the accesses are relaxed memory order. In

the mapping to the JAM this translates into opaque mode accesses which are not allowed to exhibit

a cycle in po | rf. Thus both models forbid the load-buffering behavior in this case.

The mp_relacq_rs test leverages the release sequences of C11. Since the JAM does not include

release sequences it does not forbid the behavior of this test.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

Vafeiadis et al. [2015]

name RC11 JAM

lb Never Never
fig6 Never timed out
fig6_translated Never timed out

Lahav et al. [2017]

name RC11 JAM

IRIW-acq-sc Sometimes Never
Z6.U Sometimes Never

New C11 Tests

name RC11 JAM

IRIW-sc-rlx-acq Sometimes Never

Wickerson and Batty [2015]

name RC11 JAM

mp_relacq_rs Never Sometimes

Wickerson and Batty [2015]

name RC11 JAM

cppmem_iriw_relacq Sometimes Sometimes
cppmem_sc_atomics Never Never
iriw_sc Never Never
mp_fences Never Never
mp_relacq Never Never
mp_relacq_rs Never Sometimes
mp_relaxed Sometimes Sometimes
mp_sc Never Never

Lahav et al. [2017]

name RC11 JAM

2+2W Never Never
IRIW-acq-sc Sometimes Never
RWC+syncs Never Never
W+RWC Never Never
Z6.U Sometimes Never

Herd X86 Tests

name x86 JAM

CoRWR Never Never
SB+mfences Never Never
4.SB Sometimes Sometimes
iriw-internal Sometimes Sometimes
podrw000 Sometimes Sometimes
podrw001 Sometimes Sometimes
SB Sometimes Sometimes
SB+rfi-pos Sometimes Sometimes
SB+SC Sometimes Sometimes
X000 Sometimes Sometimes
X001 Sometimes Sometimes
X002 Sometimes Sometimes
X003 Sometimes Sometimes
X004 Sometimes Sometimes
X005 Sometimes Sometimes
X006 Sometimes Sometimes
6.SB Sometimes timed out
6.SB+prefetch Sometimes timed out
iriw Never Sometimes
x86-2+2W Never Sometimes

Fig. 16. RC11 & x86 Litmus Test Comparison

Our test runs for fig6 and fig6_translated timed out at 5 minutes. The behavior modeled by

these tests highlights a quirk in C11’s rules for SC accesses. Together they demonstrate that strength-

ening the memory order of a particular relaxed store in fig6 to an SC store in fig6_translated
creates new behaviors. That is, the tests demonstrate that the memory orders of C11 are not

monotonic. RC11 includes a fix proposed by [Vafeiadis et al. 2015] which forbids this behavior. In

Section 6 we prove that the JAM’s access modes are indeed monotonic in our model which means

that stronger access modes exhibit fewer behaviors, thus the behavior in these tests is forbidden.

In the case of IRIW-acq-sc, Z6.U, and IRIW-sc-rlx-acq our model forbids the behavior in

keeping with the C11 specification. We will consider each case and discuss why RC11 does not

forbid each behavior.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Short Title 1:17

rf

rf
a: WV(y, 1) e: RRA(y, 1)

f: RV(x, 0)R
vo

init: W(x,0)
co0co

popovolint volint

b: WV(x, 1) c: RRA(x, 1)

d: RV(y, 0)R

(a) IRIW RA and Volatile Reads

rf

rf
a: WV(y, 1) g: RRA(y, 2)

h: RRA(x, 0)
vo

init: W(y,0)

popovolint volint

b: WO(y, 2) d: WO(x, 2)

popo ra

co0co

c: WV(x, 1) e: RRA(x, 2)

f: RRA(y, 0)

(b) IRIW Extra Writes

rf rf

e: WV(y, 3)

f: RV(x, 0)

init: W(y,0)

povolint

b: WRA(y, 1)

po

co0co

po volint

vo

rf

volint

a: WV(x, 1)A c: RWV(y,1,2)

d: RO(y, 3)

(c) Z6.U a vo
−−−→ f

rf rf

e: WV(y, 3)

f: RV(x, 0)

volint

b: WRA(y, 1)

po
co

co

po volint

vo

po volint

a: WV(x, 1)A c: RWV(y,1,2)

d: RO(y, 3)

(d) Z6.U e vo
−−−→ b

Fig. 17. Z6.U & IRIW RA with Volatile Reads Litmus Tests

The IRIW-acq-sc test appears in in Figure 17a. The reason this is forbidden in our model is that

all accesses before a SC/Volatile read are ordered by volint. Then, because there are two such

orders in the reading threads there is either a visibility order, c vo
−−−→ f or d vo

−−−→ e. Thus, one of
the two reads must see the non-initialization write using the same reasoning from Section 4.4 for

Figure 12b. This effectively emulates the "leading" fence compilation scheme described in [Lahav

et al. 2017], where a full fence is placed before the SC/Volatile accesses. The authors (personal

communication) point out that this scheme should forbid this behavior. By contrast RC11 relaxes

the C11 model to accommodate a leading or trailing fence compilation scheme. In this case, if

the trailing fence scheme is used there’s no ordering provided to any of the SC accesses and the

execution is allowed.

Two possible executions for Z6.U test appears in Figures 17c and 17d. They represent each case

of the visibility orders induced by a volint
−−−−−−→ b and e volint

−−−−−−→ f. In 17c we have a vo
−−−→ f, which

means that f must have seen a and could not read from the initialization by cowr. In 17d we have

e vo
−−−→ b. We also have b rf

−−−→ c. Then together we have e vo
−−−→ b rf

−−−→ c. Then because c and e are

both writes to y we have e co
−−−→ c by coww. Separately, since c volint

−−−−−−→ d we have c vo
−−−→ d. Then

since e rf
−−−→ d we have c co

−−−→ e by cowr. Thus we have a cycle in co and the execution if forbidden.

This effectively emulates the "trailing" fence compilation scheme described by Lahav et al. [2017],

where a full fence is placed after SC/Volatile accesses. They point out that this scheme should

forbid this behavior. Again, RC11 relaxes C11 to model both schemes and under a leading fence

compilation scheme the behavior this allowed.

Finally, in Figure 17b we have our own variant of IRIW called IRIW-sc-rlx-acq based on the

WW+RR+... test in the ARMv8 suite. In this case, if the compiler is inserting trailing fences after a
and c, then either a vo

−−−→ d or b vo
−−−→ c. Taking the first case we can can construct b vo+

−−−−→ f from

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

a vo
−−−→ d rf

−−−→ a ra
−−−→ f and a cycle in co by cowr. The second case is similar but with the read of x

in the 4th thread.

Again, the RC11 model does not forbid this execution. In our discussion with the authors, they

suggested two possible interpretations for this behavior. The first is a leading fence compilation

scheme which we have discussed above. The second is a merge of each pair of writes into a single

write. In the second case we suggest that the Java compiler should not merge opaque mode (or

stronger) accesses.

In summary, our model correctly forbids the behavior in each of these cases. The reason is that

volatile reads would be preceded by a full fence and volatile writes would be followed by a full

fence in the presence of mixed mode programs with SC accesses. Importantly, the tension between

optimal compilation and a simple model exists here as it does with C11.

5.3 Comparison with x86
Herd provides the following built in relations for x86 litmus tests: M for memory accesses, SFENCE
for fences for intra-thread ordering of writes with other accesses, LFENCE for ordering intra-thread

ordering of reads with other accesses, and MFENCE as a full fence with cross thread ordering

guarantees.

let opq = M
let svo = [W];po;[SFENCE];po | [R];po;[LFENCE];po
let spush = po;[MFENCE];po

Mapping. We map from all regular memory accesses to opaque mode opq = M in keeping

with the opaque mode mapping from our comparison with ARMv8. We map SFENCE to specified
visibility orders from writes to other memory accesses across the fence, [W];po;[SFENCE];po. We

map LFENCE to specified visibility orders from reads to other memory accesses across the fence,

[R];po;[LFENCE];po. Finally we map MFENCE as a specified push orders between any access before
the fence to any access after the fence, po;[MFENCE];po.

Expectations.We expect the JAM to be weaker than x86 in all cases. The only weak behavior

that x86 exhibits is reordering writes with reads (store-buffering) which the JAM also allows in

opaque mode.

Results. Figure 16 shows the results of our comparison with the x86 model included with

Herd. The litmus tests are also included with Herd for the model. The two tests which timed out,

6.SB+prefetch and 6.SB, are store buffering variants. Given that the JAM can reorder writes with

reads the behavior of these tests is allowed. Otherwise the tests confirm our expectations.

6 METATHEORY
Here, we develop a metatheory for our model of the JAM. First, we detail the semantics and then

sketch the proofs for the theorems listed in the introduction. We show that each mode, from

Volatile to Opaque, admits strictly more executions, otherwise referred to as monotonicity. We

also show that properly synchronized programs, i.e. race-free programs as defined by Boehm and

Adve [2008], will only exhibit sequentially consistent behaviors as required by Java’s data-race-free

(DRF) guarantee. Finally, we show that acquire mode for all reads obviates the inclusion of the

JAM’s acyclic causality requirement.

These theorems further validate the definitions of our model, give more evidence that the model

is complete with respect to the documentation, and clearly demonstrate that the semantics is

suitable for formal reasoning. The semantics, lemmas and theorems have been mechanized in Coq.

The source is available for inspection in the supplementary material and it includes instructions on

where to find everything included below.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Short Title 1:19

6.1 Semantics
The axioms of our model apply to memory event graphs, each of which represents one possible

execution of a program. Thus far we have relied on Herd to generate executions for a program and

then apply the axioms of our model to rule on whether an execution is allowed. Our formalization

in Coq replaces the Herd machinery with the history fragment of the semantics of Crary and

Sullivan [2015] to model the set of possible executions. Here we will give enough detail about

the history semantics to understand the content of our theorems and proofs. We provide a more

comprehensive set of definitions and intuition for the semantics in Appendex C. The full semantics

is available in the supplementary material.

We use n and l to range over natural numbers and memory locations. We use i to range over

unique memory access identifiers where previously we have used a, b, c, etc. We usem to represent

one of the four access modes, P for plain, O for opaque, RA for release acquire and V for volatile.

Memory accesses, a, can take the form of reads, lm , and writes, lm := n with their accompanying

modes as well as read-writes, RW(l ,n).
We use H to range over lists of memory events that represent executions. We call these lists

histories and we use H (h) means that the memory event h is in H . Memory events record the

program’s interactions with a history. For example, H (is(i, lm := n)) records that the identifier i is a
write to l of the value n and H (exec(i)) records that i has executed, subject to the axioms of the

memory model. We use i R
−−→H i to represent our model’s relations as they apply to H .

We also require that histories satisfy some basic well-formedness conditions. For example, a read

must take it’s value from a write to the same location which has been executed. Importantly, we

require that the trace order respects any intra-thread ordering created by visibility generated from

specified orders, release-acquire accesses, or volatile accesses. This is in keeping with our restriction

on trace order as detailed in Section 4.2. We call this well-formedness condition executable. In
what follows, the well-formedness conditions are unified as trace coherence. Otherwise, the only
restrictions on histories come from the acyclicity conditions outlined in Section 4.1.

6.2 Theorems
To begin, we demonstrate the monotonicity of our access mode definitions. We define the reflexive

ordering of the access modes as P ⊑ O ⊑ RA ⊑ V and extend it to accesses lm1
⊑ lm2

, lm1
:= n1 ⊑

lm2
:= n2, RW(l ,n1) ⊑ RW(l ,n2) wheneverm1 ⊑ m2. As a technical matter we treat read-writes

as always having the same order. We extend the order to histories by matching identifiers and

ordering the accesses.

H1 ⊑ H2 ≜ ∀ i a1 a2,H1(is(i,a1)) ∧ H2(is(i,a2)) =⇒ a1 ⊑ a2

When the po, rf, and to relations of two histories H1 and H2 have the following relationships:

po
−−−→H2

⊆
po
−−−→H1

,
to
−−→H2

⊆
to
−−→H1

,
rf
−−→H2

⊆
rf
−−→H1

, then we say they match.

Theorem 1 (Monotonicity). For two histories H1 and H2, suppose that both match, both are trace
coherent, and H2 ⊑ H1. Further suppose that acyclic(

co
−−−→H1

) and that there are no specified visibility
orders or push orders in H2, then acyclic(co

−−−→H2
)

We make two notes. First the absence of specified orders in H2 is a technical convenience since

specified order edges are not related to the strength of the access modes for reads and writes.

Second, we focus on the acyclic coherence requirement because the match assumption means that

it would be trivial to satisfy the acyclic causality requirement for H2 supposing it is true of H1

because po and rf have fewer edges in H2.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

Proof Sketch. We assume i co
−−−→H2

i for some i and show that this must mean i co
−−−→H1

i which
is a contradiction. This is straight forward by induction on i co

−−−→H2
i , noting that each case of

visibility in H2 will exist in H1 because of stronger access modes in H1. □

For the last two theorems will first establish that the main component of visibility in our model,

vvo, is irreflexive.

Lemma 1 (Irreflexive Visibility). If H is trace coherent then, for all i , ¬ i vvo+
−−−−−→H i .

Proof Sketch. This follows from two facts. First, vvo derives from orderings that are always

either program ordered from intra-thread synchronization (svo, spush, ra, volint) or trace ordered
(pushto, rf). Second, both relations are total and to is consistent with the po edges for intra-thread

visibility by the executable well-formedness condition. □

Next we show that if a program is properly synchronized then it will only exhibit sequentially

consistent behavior. We require the following standard definitions including the traditional notion

of sequential consistency [Shasha and Snir 1988]:

i1
fr
−−→H i2 ≜ ∃ i3, i3 rf

−−→H i1 ∧ i3
co
−−−→H i2

i1
com
−−−−→H i2 ≜ i1

co
−−−→H i2 ∨ i1

rf
−−→H i2 ∨ i1

fr
−−→H i2

i1
sc
−−→H i2 ≜ i1

po
−−−→H i2 ∨ i1

com
−−−−→H i2

We also require a definition of proper synchronization in keeping with our focus on visibility.

i1
sync
−−−−→H i2 ≜ ∃i3, i1 vvo+

−−−−−→H i3
po∗
−−−−→H i2 ∧ ∀i4, i3 po∗

−−−−→H i4 =⇒ i3
vvo
−−−→H i4

The idea is that any conflicting access is visibility ordered by some mechanism, be it a specified

order (fence) or a strong mode for i3. Then, following the definition of “type 2” data-races from

Boehm and Adve [2008], we say that H is race-free when, for all conflicting accesses i1 and i2, we
have i1

sync
−−−−→H i2 or i2

sync
−−−−→H i1.

Theorem 2 (DRF-SC). If H is trace coherent, race free and, acyclic(co
−−−→H), then acyclic(sc

−−→H).

Proof Sketch. We assume i sc+
−−−−→H i for some i and show a contradiction. By Lemma 1 it is

enough to demonstrate a cycle in vvo+.
We can show that for any i1 and i2, if we have i1

com
−−−−→H i2 then we have i1

sync
−−−−→H i2. Note that

any accesses related by com are conflicting. Then we have either i1
sync
−−−−→H i2 or i2

sync
−−−−→H i1. In

each case for com we can show that i2
sync
−−−−→H i1 creates a cycle in the coherence order so it must

be i1
sync
−−−−→H i2.

Then, since po is irreflexive, we have that any sequence i sc+
−−−−→H i must include at least one

com edge. Then since com edges are also sync edges, when we have i1
sc+
−−−−→H i2 we also have

i1
po | com+
−−−−−−−−→H i2 and therefore i1

po | sync+
−−−−−−−−→H i2.

But then we can rearrange a cycle in i po | sync+
−−−−−−−−→H i to be i sync+

−−−−−→H i by appending a leading

po edge to the end. Observe that for any sequence i1
sync+
−−−−−→H i2 we have i1

vvo+
−−−−−→H i2, so we have

i vvo+
−−−−−→H i as required. □

Finally, we show that if all reads are acquire-reads then the JAM’s acyclic causality requirement

is unnecessary. This theorem demonstrates the soundness of proposed compiler implementations

for satisfying the acyclic causality requirement of the JAM [Ou and Demsky 2018].

Theorem 3 (Causal Acqire-Reads). If H is trace coherent and all reads in H are acquire-reads,
then acyclic(po | rf

−−−−−→H).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Short Title 1:21

Proof Sketch. We assume i po | rf+
−−−−−−→H i for some i and show a contradiction. By Lemma 1, it is

enough to demonstrate a cycle in vvo+.
First, note that any sequence i1

rf
−−→H i2

po
−−−→H i3 implies i1

vvo+
−−−−−→H i3 because rf implies vvo and

because, by assumption, the read i2 is an acquire read and i3 is program order later, so i2
vvo
−−−→H i3.

Let
rfpoq
−−−−−→H be a reads-from edge followed by an optional program order edge. Note that, by

induction and the fact that rf and rfpo imply vvowe can show that i1
rfpoq
−−−−−→H i2 implies i1

vvo+
−−−−−→H i2

Then, since po is irreflexive, we have that any sequence i po | rf+
−−−−−−→H i must include at least one

rf edge. Thus we can rearrange to get i ′ rfpoq+
−−−−−−→H i ′ and we have i ′ vvo+

−−−−−→H i ′ by the above, as

required. □

7 UNOBSERVABLE TOTAL COHERENCE ORDER
Here we will demonstrate that the effects of a total coherence order are unobservable in our model.

This is a surprising result since a total coherence order is intuitively associated with maintaining

per-location state and we would expect concurrent writes to have a material impact on the behavior

of programs.

To start, recall that a feature of a memory model as exhibited by an example program is defined

in binary terms. The feature is present when any executions are allowed and the feature is absent

when no executions are allowed. Then we say that a feature is observable when we can construct

any example program such that the feature’s presence in the model changes whether any executions

are allowed. So, to observe a total coherence order, we must construct a program that changes

whether executions are allowed based on the presence of the total order. We will show that this is

impossible under our model.

First, note that in our model there is no way to allow previously forbidden executions when

adding coherence order edges. This means we can’t observe the feature by going from some

executions with a total order to no executions without a total order. Thus, any program that allows

us to observe the total coherence order must forbid all executions in the presence of a total order.

We will show that such a program will also forbid all executions when the total order is removed.

Theorem 4. It is impossible to construct an example program for the JAM, such that, for any two
writes, if they are totally ordered there are no valid executions, and if they are not totally ordered there
is at least one valid execution.

Proof. From a total order we have that all candidate executions can be divided between the two

directions. For some writes to the same location a and b we have:

a co
−−−→ b ∨ (1)

b co
−−−→ a (2)

We begin by eliminating all executions for the first direction, (1). This means we must construct

a cycle in co, such that, for all executions including (1) we have :

a co
−−−→ b (1)

b co
−−−→ · · ·

co
−−−→ a (3)

With this cycle, executions including (1) are forbidden by the acyclicity requirement for co.
Observe that (3) must be present in all executions of the program. If it is not then we can divide

the executions that do not have (3) between executions with (1) and executions with (2). For

the executions without (3) and with (1) the execution is allowed and we have failed to forbid all

executions. Now we must eliminate all executions for (2) with another cycle:

b co
−−−→ a (2)

a co
−−−→ · · ·

co
−−−→ b (4)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

Moreover (4) must persist for all executions for the same reason that (3) persisted. Then it must

be that, for all executions we have:

b co
−−−→ · · ·

co
−−−→ a (3)

a co
−−−→ · · ·

co
−−−→ b (4)

Then, even if we remove the total order, (1) and (2), from the model, all executions of the program

will still have a forbidden cycle by (3) and (4) and we can not demonstrate a single execution that is

allowed. □

Critically, this line of reasoning depends on the fact that we have a single acyclicity requirement

in which co participates and both (3) and (4) form a cycle that violates that requirement. If that

were not the case then (3) and (4) would not necessarily create a cycle or forbid any executions. As a

result this reasoning does not apply to the ARMv8 and RC11 models as they have multiple acyclicity

requirements involving the coherence order. In Appendix D we have included a litmus test for

ARMv8 that shows it is possible to construct a program for that model that behaves differently

with and without the total order.

Demonstrating that a total coherence order is not observable in our model means that the JAM

may adopt a total coherence order without affecting the outcomes of the model. This would allow

it to emulate other mainstream memory models in this respect and recover the intuitive notion of

per-location state.

8 RELATEDWORK
The JAM is intended as an update and expansion of Java’s memory model. As a result, we have

taken a fresh look at how to construct our model, but our work takes inspiration from a large body

of research on such formalization efforts.

8.1 The Original Java Memory Model
The original Java Memory Model [Manson et al. 2005] included an early attempt to model standard

compiler optimizations while ruling out thin-air reads. The specification in that work was part

prose and part formal definitions and the "causality" mechanisms at the heart of the model made

the definitions complex. Taken together these issues made the model unsuitable for the tasks which

one normally formalizes a programming language, namely accurate discourse, metatheory, and

algorithm verification. Later work by Ševčík and Aspinall [2008] manually examined a large suite

of litmus tests to show that the model disallowed some standard compiler optimizations. Eventually

the model was fully formalized in Coq by Huisman and Petri [2007] and Aspinall and Ševčík [2007],

but, to the best of our knowledge, there is no way to easily test the behavior of example programs.

By contrast we have constructed a readable and testable model for Java’s new access modes.

8.2 C11, ARM, and x86
The C11 memory model, which served as the inspiration for Java’a access modes, has seen extensive

study. It was originally formalized by Batty et al. [2011] with later revisions to include read-modify-

writes and fences [Sarkar et al. 2012]. The work of Vafeiadis et al. [2015], from which we draw

the largest set of our C11 litmus tests, studied the soundness of common compiler optimizations

under the model of C11 by Morisset et al. [2013]. Our monotonicity theorem is modeled after the

same theorem from Vafeiadis et al. [2015]. Most recently, the axiomatic model of Lahav et al. [2017]

incorporated the proposed fixes of Vafeiadis et al. [2015] and addressed the unsound compilation

strategies which we discussed in Section 5. Also, further progress has been made on new models

for C11 that more successfully support standard compiler optimizations without the problem of

thin-air reads [Kang et al. 2017; Pichon-Pharabod and Sewell 2016]. However, like the original Java

memory model, these models rely on complex formal constructs (promises and event structures

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Short Title 1:23

respectively). Again, our semantics remains relatively simple thanks to the JAM’s broad definition

of causal cycles.

As outlined previously there are several important differences between C11 and Java. First, the

partial coherence order required careful consideration. The consequences of this design choice

manifests most clearly where atomic read-writes are concerened. Second, the lack of legacy features,

like C11’s release sequences, and the simple mechanism that forbids causal cycles allowed us to

build a simple model. In turn, the simplicity of the model makes it more readable than existing C11

models and it allowed us to argue forcefully that the model should adopt a total coherence order.

These differences appear most clearly in our litmus test comparison with RC11 model of Lahav

et al. [2017]. Of particular note are the mp_relacq_rs and lb tests. In the first case the JAM is

weaker than C11 because it does not support release sequences, in the second case it is stronger

because the C11 specification gives no concrete definition for how to rule out thin-air reads. Notably,

the RC11 herd model also forbids causal cycles in po | rf so the load buffering behavior is forbidden.
This method of preventing thin-air reads in RC11 is included to enable their proofs of soundness

for compilation to POWER and not as a representation of the C11 specification.

Programs that mix SC/volatile access modes are the primary focus of Lahav et al. [2017]. In

particular the leading and trailing fence insertion approach to compilation was shown to be

unsound for Power under models prior to RC11. We compared our model with RC11 in Section 5.

Our semantics correctly forbids the behavior described in IRIW-sc-rlx-acq, IRIW-aqc-sc and

Z6.U in keeping with the JAM documentation.

Hardware memory models have also seen extensive study. x86 was studied by Owens et al. [2009]

and Alglave et al. [2014]. We use the model included with Herd in our litmus test comparisons and

we saw that x86 was stronger than the JAM, as expected. ARM processors have traditionally had

a much weaker memory model when compared with x86. Recently the model for ARMv8 [Pulte

et al. 2017] expanded the guarantees made by the architecture to include multi-copy-atomicity. We

saw the effects of this in the behavior of the IRIW-* and WRC-* litmus tests from our comparison

betwen the JAM and ARMv8. As expected the JAM is weaker than ARMv8 in every case except

where cycles in po | rf are concerened.

8.3 The Relaxed Memory Calculus
Our mechanized semantics is based on the history fragment of the Relaxed Memory Calculus of

Crary and Sullivan [2015]. We use their concept of specified push orders and we draw inspiration

for our definitions from their notion of visibility. Also, the proof of our theorems benefited greatly

from the library of lemmas included with the RMC mechanization. However, their purpose was to

model a weaker version of C11 in the interest of generality while, our goal is to model the JAM.

Importantly, we do not employ the execution orders of RMC, our coherence definition is far more

compact and we have added the corr rule to follow a more standard notion of coherence.

9 CONCLUSION
We have presented the first formal model for Java’s access modes. Our model is precise, complete,

and testable. We have validated our model against the expected behavior of example programs

relative to three other mainstream memory models. We have further validated the model by using

it to prove general theorems about the semantics of the Java access modes. Finally, we used our

model to demonstrate that Java’s access modes can adopt a total coherence order.

We believe our model is a strong foundation for a larger formalization effort around weak-

memory concurrency on the Java platform. In particular we would like expand the model and use

it to verify the lock-free algorithms of the standard library.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Anon.

REFERENCES
Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar, Peter Sewell, and Francesco Zappa Nardelli.

2008. The Semantics of Power and ARM Multiprocessor Machine Code. In Proceedings of the 4th Workshop on Declarative
Aspects of Multicore Programming (DAMP ’09). ACM, New York, NY, USA, 13–24. https://doi.org/10.1145/1481839.1481842

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

David Aspinall and Jaroslav Ševčík. 2007. Formalising Java’s Data Race Free Guarantee. In Proceedings of the 20th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’07). Springer-Verlag, Berlin, Heidelberg, 22–37. http:

//dl.acm.org/citation.cfm?id=1792233.1792237

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. SIGPLAN
Not. 46, 1 (Jan. 2011), 55–66. https://doi.org/10.1145/1925844.1926394

Mark Batty and Peter Sewell. 2014. The Thin-air Problem. http://www.cl.cam.ac.uk/~pes20/cpp/notes42.html. [Online,

accessed Dec 2018].

John Bender, Mohsen Lesani, and Jens Palsberg. 2015. Declarative Fence Insertion. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2015). ACM,

New York, NY, USA, 367–385. https://doi.org/10.1145/2814270.2814318

Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ Concurrency Memory Model. In Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’08). ACM, New York, NY, USA,

68–78. https://doi.org/10.1145/1375581.1375591

C++ Standards Committee, Pete Becker, et al. 2010. Programming Languages-C++(final committee draft). C++ standards

committee paper WG21/N3092= J16/10-0082.

Jon Corbet. 2012. ACCESS_ONCE(). https://lwn.net/Articles/508991/. [Online, accessed Dec 2018].

Karl Crary and Michael Sullivan. 2015. A Calculus for Relaxed Memory. In Proceedings of POPL’15, ACM Symposium on
Principles of Programming Languages.

Marieke Huisman and Gustavo Petri. 2007. The Java memory model: a formal explanation. VAMP 7 (2007), 81–96.

JDK9. 2017. VarHandle (Java SE 9 & JDK 9). https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/VarHandle.html.

[Online, accessed March 2019].

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

memory Concurrency. In Proceedings of POPL’17, SIGPLAN–SIGACT Symposium on Principles of Programming Languages.
Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in

C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2017). ACM, New York, NY, USA, 618–632. https://doi.org/10.1145/3062341.3062352

Doug Lea. 2017. JEP 193. http://openjdk.java.net/jeps/193. [Online, accessed March 2019].

Doug Lea. 2018. Using JDK 9 Memory Order Modes. http://gee.cs.oswego.edu/dl/html/j9mm.html. [Online, accessed March

2019].

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java Memory Model. In Proceedings of the 32Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’05). ACM, New York, NY, USA, 378–391.

https://doi.org/10.1145/1040305.1040336

Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler testing via a theory of sound optimisations in

the C11/C++ 11 memory model. In ACM SIGPLAN Notices, Vol. 48. ACM, 187–196.

Peizhao Ou and Brian Demsky. 2018. Towards Understanding the Costs of Avoiding Out-of-thin-air Results. Proc. ACM
Program. Lang. 2, OOPSLA, Article 136 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276506

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: X86-TSO. In Proceedings of the 22Nd
International Conference on Theorem Proving in Higher Order Logics (TPHOLs ’09). Springer-Verlag, Berlin, Heidelberg,
391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Semantics for Relaxed Atomics That Permits Optimisation

and Avoids Thin-air Executions. SIGPLAN Not. 51, 1 (Jan. 2016), 622–633. https://doi.org/10.1145/2914770.2837616

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2017. Simplifying ARM Concur-

rency: Multicopy-atomic Axiomatic and Operational Models for ARMv8. Proc. ACM Program. Lang. 2, POPL, Article 19
(Dec. 2017), 29 pages. https://doi.org/10.1145/3158107

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade Alglave, and Derek Williams.

2012. Synchronising c/c++ and power. Acm Sigplan Notices 47, 6 (2012), 311–322.
Jaroslav Ševčík and David Aspinall. 2008. On Validity of Program Transformations in the Java Memory Model. In ECOOP

2008 – Object-Oriented Programming: 22nd European Conference Paphos, Cyprus, July 7-11, 2008 Proceedings, Jan Vitek

(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 27–51. https://doi.org/10.1007/978-3-540-70592-5_3

Dennis Shasha and Marc Snir. 1988. Efficient and Correct Execution of Parallel Programs That Share Memory. ACM Trans.
Program. Lang. Syst. 10, 2 (April 1988), 282–312. https://doi.org/10.1145/42190.42277

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/1481839.1481842
https://doi.org/10.1145/2627752
http://dl.acm.org/citation.cfm?id=1792233.1792237
http://dl.acm.org/citation.cfm?id=1792233.1792237
https://doi.org/10.1145/1925844.1926394
http://www.cl.cam.ac.uk/~pes20/cpp/notes42.html
https://doi.org/10.1145/2814270.2814318
https://doi.org/10.1145/1375581.1375591
https://lwn.net/Articles/508991/
https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/VarHandle.html
https://doi.org/10.1145/3062341.3062352
http://openjdk.java.net/jeps/193
http://gee.cs.oswego.edu/dl/html/j9mm.html
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/3276506
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/2914770.2837616
https://doi.org/10.1145/3158107
https://doi.org/10.1007/978-3-540-70592-5_3
https://doi.org/10.1145/42190.42277

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Short Title 1:25

Michael J. Sullivan. 2015. Low-level Concurrent Programming Using the Relaxed Memory Calculus. https://www.msully.

net/stuff/thesprop.pdf. PhD. Dissertation [Online, accessed July 2017].

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Common

Compiler Optimisations Are Invalid in the C11 Memory Model and What We Can Do About It. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New York,

NY, USA, 209–220. https://doi.org/10.1145/2676726.2676995

John Wickerson and Mark Batty. 2015. Taming the complexities of the C11 and OpenCL memory models. arXiv preprint
arXiv:1503.07073 (2015).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://www.msully.net/stuff/thesprop.pdf
https://www.msully.net/stuff/thesprop.pdf
https://doi.org/10.1145/2676726.2676995

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Anon.

A FULL HERD MODEL
let opq = O | RA | V
let rel = W & RA
let acq = R & RA
let vol = V

(* release acquire ordering *)
let ra = po;[rel] | [acq];po

(* intra-thread volatile ordering *)
let volint = po;[vol & R] | [vol & W];po

(* intra-thread ordering contraints *)
let into = svo | spush | ra | volint

(* define trace order, ensure it respects rf and intra-thread specified orders *)
(* Note that ((W * FW) & loc & ~id) = cofw *)
with to from linearisations(M\IW, ((W * FW) & loc & ~id) | rf | into)

(* cross thread push ordering extended with volatile memory accesses *)
let push = spush | volint
let pushto = to+ & (domain(push) * domain(push))

(* extend ra visibility *)
let vvo = rf | svo | ra | push | pushto;push
let vo = vvo+ | po-loc

include "filters.cat"
let WWco(rel) = WW(rel) & loc & ~id
let cofw = WWco((W * FW))

(* coherence rules *)
let coinit = loc & IW*(W\IW)
let coww = WWco(vo)
let cowr = WWco(vo;invrf)
let corw = WWco(vo;po)
let corr = WWco(rf;po;invrf)

(* general definition from RC11, works for atomic rws and split instruction rws *)
let rmw-jom = [RMW] | rmw

(* read-write rules *)
let cormwtotal = WWco(((range(rmw-jom) * _) | (_ * range(rmw-jom))) & to)
let cormwexcl = WWco((rf;rmw-jom)^-1;co-jom)

let rec co-jom = coww | cowr | corw | corr
| cofw | coinit | cormwtotal
| WWco((rf;rmw-jom)^-1;co-jom)

acyclic (po | rf) & opq
acyclic co-jom

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Short Title 1:27

B SPECIFIED ORDERS: A MAPPING FOR ARMV8 AND X86 READ-WRITES
Specified orders can be compiled to existing synchronization using a fairly direct mapping. Here

we give an example mapping for ARMv8. We also discuss how specified visibility orders can be

elided when the target platform for compilation already enforces them.

[W]; svo; [M]⇝ [W]; po; [DMB ST]; po; [M]

[R]; svo; [M]⇝ [R]; po; [DMB LD]; po; [M]

[M1]; push; [M2]⇝ [M1]; po; [DSB]; po; [M2]

Note that this mapping is informal. The fence instruction for each mapping must be inserted on

all program order paths between the ordered instruction as demonstrated originally by Bender

et al. [2015] and Sullivan [2015].

The value of these orders can be seen in the case of atomic read-writes on x86. The JAM

makes no intra-thread ordering guarantees for atomic read-writes even though they exist on some

architectures like x86 [Owens et al. 2009]. This might result in unnecessary synchronization to

achieve a desired outcome that requires such intra-thread ordering. However, using specified orders

means that a compiler can make intelligent decisions based on the target platform. For example if

we have a specified visibility order between a read-write and a later read target architecture is x86,

the compiler can recognize that the head of the order is a compare and exchange instruction and

omit any extra synchronization:

[RW]; svo; [R]⇝ [RW]; po; [R]

C HISTORY SEMANTICS
The syntax of our formalization appears in Figure 18. We use n, l , i , and p to range over natural

numbers, memory locations, unique memory access identifiers, and unique thread identifiers. We

usem to represent one of the four access modes, P for plain, O for opaque, RA for release acquire

and V for volatile. Note that RA writes are release writes and RA reads are acquire reads. Memory

accesses, a, can take the form of reads, lm , and writes, lm := n with their accompanying modes as

well as read-writes, RW(l ,n).
Memory events, h record the program’s interactions with memory. Notably, we assume that the

program and history can record specified visibility and specified push orders, vo(i, i) and push(i, i)
before the execution of the related identifiers. For example, the program may use the labeling and

ordering mechanism of Crary and Sulivan [cite]. We discuss the other events in detail below.

We use d to range over program generated events which are translated by the memory semantics

into memory events and we use P to abstract over an expression language that can produce such

events. We use H to represent a list of memory events, where H (h) means that h ∈ H .

Finally we use i R
−−→H i to representmemorymodel relations forH . In what follows, the restriction

on the trace order, to, and the acyclicity requirements form the interface with the relations of our

axiomatic model.

Program and history states transition together via the step relation defined in figure 19. The

history transition semantics certifies program events d@p of the form i = a@p, i@p, or i ton@p
and turns them into memory events.

i = a@p represents the “initialization” of a memory access a using the unique identifier i in
thread p. The history semantics appends init(i,p) and is(i,a) to H to record the initialization and

the form of the memory access identified by i . The only certification required of an initialization is

that the memory access identified by i is not already initialized. Importantly, we assume that the

program initializes memory accesses in program order, so the subsequence of inititalization events

records program order in H .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

Nat n := 0 | 1 | . . .

Locations l := . . .

Modes m := P | O | RA | V

Access Ids i := ...

Thread Ids p := ...

Accesses a := lm | lm := n | RW(l ,n)

Mem. Events h := init(i,p) | is(i,a) | exec(i)

| rf(i, i) | vo(i, i) | push(i, i)

Prog. Events d := i = a | i | i to n

Program P := . . .

History H := ϵ | H ,h

Fig. 18. Syntax

P
d@p
−−−→ P ′ H

d@p
−−−→ H ′

step

(P ,H) → (P ′,H ′)

¬H (init(i, _))
init

H
i=a@p
−−−−−→ H , init(i,p), is(i,a)

wf(H , exec(i),p) acyclic(co
−−−→H,exec(i))

write

H
i@p
−−−→ H , exec(i)

wf(H , rf(iw , i),p,n)
acyclic(co

−−−→H,rf(iw ,i))

acyclic(po | rf
−−−−−→H,rf(iw ,i))

read

H
i ton@p
−−−−−−→ H , rf(iw , i)

reads(H , i, l) ≜ ∃m,H (is(i, lm)) ∨ ∃n,H (is(i,RW(l ,n)))

writes(H , i, l ,n) ≜ ∃m,H (is(i, lm := n)) ∨ H (is(i,RW(l ,n)))

executed(H , i) ≜ H (exec(i)) ∨ ∃ iw ,H (rf(iw , i))

executable(H , i) ≜ ¬ executed(H , i) ∧ ∀i ′, i ′ into
−−−−→H i ==⇒ executed(H , i ′)

wf(H , exec(i),p) ≜

H (init(i,p))
H (is(i, lm := _))

executable(H , i)

wf(H , rf(iw , i),p,n) ≜

H (init(i,p))
reads(H , i, l)
writes(H , iw , l ,n)
executed(H , iw)
executable(H , i)

Fig. 19. Semantics

i@p represents the execution of a write in thread p which is recorded in history with exec(i).
Writes must be certified by the acyclicity requirement for co and a basic well-formedness condition

wf(H , exec(i),p). The well-formedness requires that i be initialized H (init(i,p)), that the memory

access associated with i be a write,H (is(i, lm :=n)), and that the write be executable executable(H , i).
The executable(H , i) constraint requires that i has not already executed and that the sequence

of execution, to, respects any intra-thread ordering, into, as in the description of Section 4.2. The

program is otherwise free to execute memory accesses out-of-order.

i ton@p represents the execution of a read i , reading the value n in thread p which is recorded

in history with rf(iw , i). Reads must be certified by the same acyclicity requirement for co and

the additional requirement on po | rf. The well-formedness condition for reads requires that i be
initialized, that it be a read or a read-write, reads(H , i, l), and that it be executable. It further requires

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Short Title 1:29

that the paired write iw is executed, executed(H , iw), and that iw writes the value n to the same

location l , writes(H , i, l ,n).

D OBSERVABLE TOTAL COHERENCE FOR ARMV8
Here we demonstrate that it is possible to construct a program that is only forbidden due to the

total coherence order of the ARMv8 memory model from Pulte et al. [2017]. We start by noticing

that Herd model for ARMv8 has two acyclicity requirements that involve co:

(* Internal visibility requirement *)
acyclic po-loc | ca | rf as internal

(* External visibility requirement *)
irreflexive ob as external

In the first requirement ca = fr | co. In the second ob = obs | ... where obs = ... | coe
and coe is coherence restricted to inter-thread relationships. Critically, as illustrated in the proof

for our model, they do not together work to form cycles. So we can use one with each side of the

total order to demonstrate its observability in the model.

We have constructed the following program (included in the supplementary material) which will

exhibit a cycle in the first requirement for one side of the total order and a different, incompatible

cycle, for the second requirement:

Arch64 totalco
{
0:X1=x; 0:X3=y;
1:X1=x; 1:X3=y;
2:X1=x; 2:X3=y;
}
P0 | P1 | P2;
LDR X2,[X1] | LDAR X5, [X3]| LDAR X5,[X1];
MOV X0,#1 | MOV X2,#2 | MOV X0, #1;
STR X0,[X1] | STR X2,[X1] | STR X0, [X3];

exists (0:X2=2 /\ 1:X5=1 /\ 2:X5=1)

We show this by running the program with Herd and allowing executions that violate these two

requirements (we mark them with “flag” in the Herd parlance). The result in Figure 20 is exactly

two flagged executions. Each figure corresponds to one direction of the total ordering between

b and d. We will inspect both to demonstrate that they are only forbidden as consequence of the

total order, and thus if the total order was taken away they would both be allowed.

In Figure 20a note the following. All of the cycles for any kind of edge involve a po−loc
−−−−−−→ b

which is not in ob. This means we can avoid a cycle in ob. Recall that if there were a cycle in ob
then when we use ob for the other side of the total coherence order it would be a cycle regardless

of the total coherence order. Also, note that if we take away b co
−−−→ d (blue) it will also remove

e fr
−−−→ d. Thus, if we take away b co

−−−→ d by removing the total coherence order of the model, there

is no cycle left in the graph and the execution would be allowed.

In Figure 20b note the following. All of the cycles for any kind of edge involve c bob
−−−−→ d which

is not in po-loc | ca | rf. This means we can’t establish a cycle in po-loc | ca | rf. Thus, if
we take away d co

−−−→ b by removing the total coherence order of the model, there is no cycle in ob
left in the graph and the execution would be allowed.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Anon.

(a) po-loc | ca | rf Cycle (b) ob Cycle

Fig. 20. Two Flagged Executions

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Java's Access Modes
	3 Distinguishing Features of the JAM
	3.1 Letting Go of Release Sequences
	3.2 Acyclic Causality
	3.3 Partial Coherence Order

	4 Axiomatic Model
	4.1 Plain & Opaque Mode
	4.2 Fences
	4.3 Release-Acquire Mode
	4.4 Volatile Mode
	4.5 Atomic Read-Writes
	4.6 Summary

	5 Validation
	5.1 Comparison with ARMv8
	5.2 Comparison with RC11
	5.3 Comparison with x86

	6 Metatheory
	6.1 Semantics
	6.2 Theorems

	7 Unobservable Total Coherence Order
	8 Related Work
	8.1 The Original Java Memory Model
	8.2 C11, ARM, and x86
	8.3 The Relaxed Memory Calculus

	9 Conclusion
	References
	A Full Herd Model
	B Specified Orders: A Mapping for ARMv8 and x86 Read-writes
	C History Semantics
	D Observable Total Coherence for ARMv8

